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Abstract

Intelligence test scores can account for achievement differences in many content areas to a considerable extent. An indi-
vidual’s intelligence quotient results from complex interactions between genes and environmental stimulation, foremost
schooling. The amount of variance in intelligence to be explained by genes is the higher the more successful a society is in
providing cognitively stimulating environments for everybody. Intelligence can be understood as a start-up resource of
information processing which has to be invested in knowledge in order to enable competencies in a domain. Teacher’s
professional competencies have a major impact on how learners exploit their intelligence for learning particular subjects.

Intelligence: A Valid Predictor of Achievement
Differences

Individuals with similar cultural, social, and educational
backgrounds differ from one another in the time they need to
process certain information, in their ability to understand
complex ideas, in the efficiency with which they can deal with
novel, transfer demanding tasks, and in the learning outcome
that results from attending certain instructional environments.
The construct of psychometric intelligence attempts to clarify
what is behind such achievement variations that cannot
be explained by differences in learning environments or in
amount of practice.

Measuring Intelligence

About a century ago Alfred, Binet constructed problems
designed to determine whether children who did not meet
certain school requirements suffered from mental retardation
or from behavioral disturbances. Since then many psycholo-
gists have been quite successful in developing reliable verbal
and nonverbal intelligence tests for children and adults. Intel-
ligence tests contain items composed of verbal, numerical, and
pictorial material, and they require various mental operations,
among them inductive and deductive reasoning, pattern
recognition, and memorization. So-called speed tests contain
items that are comparably easy for everybody; individual
differences in the numbers of correctly solved problems only
occur because of time limitations. In power tests, the items are
ordered according to their difficulty, and limits in intelligence
become apparent if people do not solve all problems despite
having sufficient time. The distribution of achievement scores
in all intelligence test scales follows the bell curve (normal
distribution). This reflects the fact that the majority of people
resemble each other quite a lot with respect to their cognitive
capabilities, and only a few people show extraordinarily low or
high competencies. Normal distribution is the statistical
prerequisite for measuring intelligence on interval level by
indicating deviations from the mean score. To determine the
intelligence quotient (I1Q), test scores are converted to a scale
in which by convention the mean is 100 and the standard

deviation is 15. The reliability of IQ tests, revealed either by
correlation coefficients based on repeated measurement or by
figuring out internal consistency, is between 0.80 and 0.90,
which is higher than for most other psychometric measures.
Nonetheless, a reliability lower than 1.0 only allows us to
interpret a range rather than a single value. For example, if
a person’s tested IQ is 110, and if the reliability of the test is
0.90, the IQ of this person is between 101 and 119 with
a probability of 95%. A test reliability of 0.80 reveals a range
of 97-123.

Despite broad variations in the content and the form of
presentation of intelligence test items, all tests have in
common that they do not presuppose knowledge that can only
be acquired in particular learning environments not accessible
to everybody. Moreover, differences in test scores within
a group only reflect differences in intelligence between these
persons if all of them have had access to comparable learning
environments. In other words, each member of the group must
have had, in principle, the opportunity to acquire the knowl-
edge necessary to solve the problems. Intelligence test scores
can be raised considerably by practicing the respective types of
items, while individual differences do not disappear but rather
remain quite stable at a higher level. The Flynn effect, named
for its discoverer, is the observation that modernization of
a nation goes along with massive IQ gains over time. In the
meantime, many highly developed countries have reached an
asymptote, while nations where modernization began later
still gain around three IQ points per decade. Reasons for the
Flynn effect are manifold and still under debate, but it is
undisputed that better schooling as well as widespread expo-
sure to tasks which resemble intelligence test items in various
media are major causes.

Individual differences in intelligence test scores between
persons can only be interpreted as differences in general
cognitive resources if similar amounts of practice can be
presupposed. Attempts to construct so-called culture-free or
culture-fair tests, which were supposed to be unaffected by
prior experience, have failed because it turns out that different
cultures are not prepared in the same way even for dealing
with nonverbal material and mental operations that are not
part of institutional schooling. Although some studies reveal
ethnic differences in mean IQ, hitherto there is no convincing

International Encyclopedia of the Social & Behavioral Sciences, 2nd edition, Volume 12

http://dx.doi.org/10.1016/B978-0-08-097086-8.92017-8 323

International Encyclopedia of the Social & Behavioral Sciences, Second Edition, 2015, 323-328


http://dx.doi.org/10.1016/B978-0-08-097086-8.92017-8

324 Intelligence, Prior Knowledge, and Learning

evidence that these differences are genetically affected. There is
rather overwhelming evidence that all ethnic groups gain IQ
points as a consequence of better schooling. Within a fairly
homogenous cultural context, intelligence can be considered
as a personality trait mainly for two reasons. First, perfor-
mance on intelligence items that are based on different
contents and mental operations show significant correlations.
For instance, correlations between tests on inductive reasoning
with pictorial material and with verbal material are around
0.50, and correlations between tests that measure basic visual-
spatial competencies such as mental rotation and tests of
verbal fluency are about 0.30. In numerous studies run all
over the world, multivariate statistical methods such as factor
analysis have revealed that a single factor, called factor g, can
account for 40-50% of the variance in IQ test batteries
composed of various scales covering a range of content
knowledge and mental operations. Second, longitudinal
studies have revealed that IQ is a fairly stable measure across
the life span. Long-term stability of IQ for adolescents and
adults comes close to the reliability of the tests, as, among
others, a once-in-a-century study from Scotland has shown
(Deary, 2012). Even cognitive measures of attention gained in
early childhood reveal long-term correlations are around 0.50
for both verbal and nonverbal tests. Overall, intelligence test
scores predict academic performance fairly well: the correla-
tions between IQ and grades in school and university are
about 0.50. The correlations between intelligence test scores
and measures of outside-school success such as income or
professional status are lower but still significant. That intelli-
gence cannot account for a larger amount of achievement
variation is not at all surprising, given the importance of num-
erous other factors, among them social background, motiva-
tion, and effort. A longitudinal study by Duckworth et al.
(2011) revealed that standardized achievement test scores
were stronger related to intelligence than to motivational
factors, while grades determined by teachers were deter-
mined more by factors like self-control than by intelligence.

Given that verbal and nonverbal intelligence tests are good
predictors of how well an individual will succeed in school and
university, they are quite helpful for making recommendations
for different educational trajectories. They allow educators to
identify children who cannot be expected to gain sufficiently
from standard schooling and therefore need extra support
adapted to their special needs, or children who might benefit
from an advanced learning environment. The validity of
intelligence tests can be further increased by the dynamic
testing approach (Sternberg and Grigorenko, 2002), which
means that all test-takers practice the items in several trials by
getting feedback and thinking hints so that individual differ-
ences in familiarity with tests are compensated for. Particularly
for children from disadvantageous social environments,
learning tests are a more reliable and valid measures of intel-
ligence than conventional IQ tests. Attempts to extend the
construct of intelligence by including social and emotional
competencies as well as striving for success are controversial
because the theoretical background of these concepts is still
vague, and, more importantly, because the tests designed to
measure these aspects do not meet the strong diagnostic criteria
that have been established in psychometric research (Neubauer
and Freudenthaler, 2005).

What Is Behind Intelligence: Factor g, Working
Memory, and Specific Abilities

What cognitive capabilities are behind factor g is still under
debate, although in the past decade major insights could be
seen to emerge. This is also due to the fact that much has been
learned about the neural underpinnings of human intelligence.
The substantial negative correlations between IQ and reaction
times in solving simple problems that had been found in
numerous studies can now be interpreted in the light of brain
imaging research. A constant finding is that more intelligent
individuals show less brain activation (measured by electro-
encephalography (EEG) or functional magnetic resonance
imaging (fMRI)) when completing intelligence test items. The
more intelligent a person is, the less neural resources he or she
needs for solving the problem (Neubauer and Fink, 2009).
Particular progress has been made in localizing the brain
areas which indicate differences in intelligence: the prefrontal
cortex, an area which plays a major role in dealing with
complex and novel problems as well as in working memory
functions. Considerable progress has been made in bringing
together research on working memory and intelligence
(Oberauer et al., 2008). Working memory is understood as
a central cognitive function of human beings which is
responsible for temporarily maintaining and manipulating
knowledge during cognitive activity. Working memory
functions are measured by tasks that require the goal-oriented
active monitoring of incoming information or reactions
under interfering and distracting conditions. Performance
variations in these tasks have been found to be highly related
(average correlations of 0.70 are reported) to differences in
intelligence test scores. Psychologists agree that although there
is more to IQ than working memory functions, the latter
should be regarded as an explanatory construct for reasoning
abilities.

Although factor g can be extracted from different intelli-
gence tests, many correlations between intelligence subtests,
though significant, are low, indicating the involvement of
independent mental resources. Even between tests on inductive
reasoning which are based on different forms of representation
(i.e., pictures, numbers, words), only medium correlations
are revealed, suggesting that cognitive processes are to a large
extent guided by specific verbal, visual-spatial, or numerical
abilities, among others. Since the 1960s, concerted attempts
have been made to integrate general and specific abilities into
broader theories of intelligence in a hierarchical model which is
now known as the Cattell-Horn-Carroll theory, which has
been recently discussed in light of modern IQ tests by Kaufman
(2009). Psychologists now agree that the abilities which
contribute to intelligence tests scores are best classified on
three levels. Narrow abilities on level one either refer to
speed of sensory processes or specific competencies acquired
through learning (e.g., reading skills). The broad abilities on
level two go on from the distinction between fluid intel-
ligence (Gf) and crystallized intelligence (Gc). Gf mainly
describes logical reasoning, measured by content-poor
nonverbal tests, and Gc, which is particularly revealed in
content-rich verbal tests, represents the accumulation of
reading and writing skills as well as higher-order knowledge
over the life span of an individual. Level three describes
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a unified component of cognitive competencies which corre-
sponds to the general factor.

The distinction between Gf and Gc is important in light of
age-related changes of intelligence. While both kinds of intelli-
gence are closely interrelated in childhood, from the age of about
25 years on, however, Gf and Gc take different developmental
trajectories. While Gf starts to decrease at the age of 25, first
slightly and from about 50 years on more quickly, Gc is unaf-
fected by age and even has good chances to increase until the age
of around 70. It is worth noticing that because of the large
individual differences, the given age information is only a rough
estimation. Developmental changes also occur with respect to
the structure of intelligence. The prominence of Gf decreases
during childhood while Gc as a function of repeated enlarge-
ment and rearrangement of knowledge becomes more useful.

Intelligence as the Result of Gene-Environment
Interactions

The question of heritability of intelligence can still cause quite
a stir in the broader public. In science, however, the controversy
on whether genes have an impact on the development of
intelligence is a thing of the past. To make a long story short, it is
no longer the question of nature versus nurture but nature via
nurture (Ridley, 2003). Every aspect of human behavior is
embodied in genes but it is the environment which triggers
gene expression. Particularly the comparison between
identical and fraternal twins shed light on the impact of genes
on intelligence. The correlation between the intel-
ligence test scores of raise-together identical twins almost ties
up with the reliability coefficient of the respective test. At the
same time, the correlation between fraternal twins rarely exceeds
the correlation found between regular siblings, although the
latter group due to their age differences had been sharing less
experience than twins. Other studies revealed that the IQ of
young adults who had been adopted shortly after birth was
more similar to their biological than to their adoptive parents.

Altogether, twin and adoption studies suggest that 50-80%
of the IQ variation is due to genetic differences. This relatively
large range of percentage across different studies is due to the
population dependence of heritability. It is namely the case
that the amount of variance in intelligence test scores explained
by genes is higher as more members in a society have access to
school education, health care, and sufficient nutrition. Several
studies revealed lower heritability of intelligence for children
raised in lower socioeconomic status (SES) families
(Turkheimer et al., 2003). It turned out that lower SES fraternal
twins resembled each other more than higher SES ones,
indicating a stronger impact of shared environment under the
former condition. Or, in other words, because of the less
stimulating environment in lower SES families, the
expression of genes involved in the development of
intelligence is liable to be hampered.

The complex interaction between genes and environment
is also founded on the fact that heritability of intelligence
increases during the life span. To understand this very well-
established finding, one has to realize that societies which
provide access to a broad variety of cognitive activities in
professional as well as in private life enable adults more than

children to actively select special environments which fit their
genes. People who have found their niche can perfect their
competencies by deliberate learning. Although, however, it is
beyond any shadow of doubt that in developed societies, genes
can explain a huge amount of IQ differences, the search for the
genes responsible for the expression of cognitive capabilities has
not at all met with much success, despite the money and effort
invested in human genome projects. Given, however, that even
for height less than 20% of the variance can be traced back to
already identified genes, it is far from surprising that it is almost
impossible to track down the genes that are involved in intelli-
gence (Deary, 2012). It is entirely plausible that very large
numbers of genes are spread out across the entire genome and
have their share, and moreover these genes seem to interact in
very complicated ways with each other as well as with
environmental cues. In the foreseeable future, biologists will
not be able to predict a baby’s cognitive capabilities from his
or her DNA. Personalized education, which means that a child
gets the education that fits his or her genome, is nothing but
a pipe dream. What can, however, be said for sure is that in
societies which provide a cognitively stimulating environment
for everybody, intelligence differences will not decrease but
rather increase on a high level.

Genes, however, not only indirectly guide learning and
knowledge acquisition via general and specific abilities. There
is rather growing evidence that during evolution, the human
mental architecture has been equipped with quite specific
knowledge structures, for instance, about visual or auditory
patterns, numbers and magnitudes, physical objects, language
use, and social situations. Such knowledge structures, typically
labeled as core knowledge or privileged knowledge (Spelke and
Kinzler, 2007), allow human beings appropriate cognitive and
behavioral functioning from the very beginning almost
without effort. Such kind of fast learning sharply contrasts
with the huge difficulties human beings may encounter when
it comes to learning at school. For better understanding the
obstacles and often even the severe difficulties that can occur
when youngsters are supposed to acquire academic skills and
competencies as there are reading, writing, or mathematical
and scientific reasoning, one has to take into consideration
the evolution of these fields in a cultural context during the
past millenniums if not centuries or even decades. A today’s
child, equipped with a DNA comparable to the one of
a stone-age person, is expected to acquire knowledge within
few years which took mankind millenniums to develop. The
core knowledge human beings have been equipped with
during evolution can be the starting point for building more
advanced knowledge structures in different domains. In the
case of mathematics, it is entirely plausible that nature has
equipped human beings with intuitive number knowledge and
sensitivity for magnitude. As a consequence, to the best of our
knowledge, all cultures have numbers words, even illiterate
ones. However, having specific symbols for numbers is even
not common among all cultures with script. The Arabic place
value number system, which is now common in most parts of
the world, was only developed a few hundred years ago. Only
after the number ‘0" had made its way from India via the Arabic
countries to Europe that the preconditions for developing our
decimal system were given. It was the Arabic number system
which opened up the pathway to academic mathematics.
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Cultural transformations based on invented symbol systems
were the key to advanced mathematics. Central content areas in
mathematics curricula of high schools, such as calculus, were
only developed less than three centuries ago. What makes
school a real challenge is the fact that within a few years young
people have to acquire knowledge which has been developed
over centuries by genius minds with tremendous effort. While
intuitive quantification seems to be a universal cognitive
resource almost unaffected by differences in intelligence,
correlations of r = 0.50 and higher are found between IQ and
achievement in mathematics. Discovering principles that
underlie the relationships between numbers and under-
standing how some of these principles can be described in
verbal, numerical, and graphical representations required
general cognitive resources. This leads to the more general
question of how domain-specific knowledge has to be repre-
sented in order to allow reasoning and drawing inferences. In
the past decades, cognitive scientists have developed theories of
knowledge representation which enable higher-order reasoning
and academic competencies. Moreover, educational science has
worked our frameworks for learning environments that can
foster the acquisition of usable knowledge.

Knowledge Construction

Intelligence can be understood as a start-up cognitive resource
which has to be invested in the construction of knowledge in
order to enable behavioral and cognitive functioning, including
problems solving and decision making. How well such activities
work out particularly depends on the quality of knowledge
representations in the particular content domain. Knowledge
has a multifacet nature, among them knowledge about facts or
abstract concepts, about how to efficiently solve routine prob-
lems, and knowledge about more generally applicable learning
strategies. These different facets of knowledge all interact in
contributing to a person’s competence, and they can differ in
their functional characteristics. Elements of knowledge can be
isolated or interrelated, context-bound or context-general,
abstract or concrete, implicit or conscious, inert or accessible
with different degrees. Just having a high accumulation of
factual knowledge in a domain is usually not at all enough for
cognitive and behavioral functioning. To characterize this situ-
ation, the term ‘inert knowledge’ has been invented. An example
of inert knowledge is vocabulary of a foreign language which
has been learned and stored in memory in a dictionary style, but
cannot be retrieved during natural communication.

Cognitive scientists have agreed on distinguishing between
declarative (knowing that) and procedural (knowing how)
knowledge, a differentiation that can be applied to a broad
variety of subject areas. Declarative knowledge can be commu-
nicated because it is represented on the basis of symbol systems
(language, script, mathematical, or visual-spatial representa-
tions). Declarative knowledge can be applied to concrete
instances and facts, or to general and abstract knowledge of the
core principles and their interrelations in a domain. It is
assumed to be stored mentally in some form of relational
representation, for example, schemas or semantic networks
which allow for its flexible transformation through processes of
inference and elaboration. Declarative knowledge is therefore

not bound to specific problem types and it is, in principle,
transferable to other problems.

Procedural knowledge, in contrast to declarative knowl-
edge, is usually seen as knowledge of operators and the con-
ditions under which they can be applied to reach certain goals.
It can be automated to different degrees, depending on the
extent of practice. Automated procedural knowledge can be
used with minimal conscious attention and few cognitive
resources. This efficiency, however, has the drawback of
inflexibility. Because automated knowledge is only partly open
to conscious inspection, it can hardly be verbalized or trans-
formed by higher mental processes. As a consequence, it is
often tied to specific problem types. Both kinds of knowledge
are involved in reasoning and problem solving in any domain,
but they are acquired in different pathways. Procedural
knowledge results from practice and repetition. The more often
we conduct an action in the correct way, the less attention and
control will be needed.

Declarative knowledge can be subdivided into factual and
conceptual knowledge. While facts can be acquired by rote-
learning, conceptual knowledge, in contrast, results from
conscious elaboration and reasoning with progressively
focusing on defining rather than on characteristic features. This
transition was studied for a great variety of concepts from
different domains. Younger children, for instance, associate the
concept of ‘parents’ with ‘caring for young children,” whereas
older children focus on ‘having offspring.” Younger children in
elementary school will agree that a pile of rice has weight, but
deny that an individual grain of rice has weight as well. This
seemingly implausible answer turns out to be highly plausible
if one realizes that for younger children, ‘weight’ and ‘being
heavy’ are still equivalent. When being asked whether a grain of
rice has weight if it is put on the back of an ant, their answer is
yes with deep conviction (for an overview, see Stern, 2005).

Research on learning science and mathematics has shed
light on numerous differences in conceptual understanding
between experts and novices. This is a particular challenge for
schools in general and for teachers in particular. Particularly in
subjects like science and mathematics, many teachers are
disappointed about their student’s scant learning gains despite
the effort they put into preparing and structuring the lessons.
They strictly keep to a logical sequence, and they present very
clear and precise definitions, preferably based on mathematical
formulas. As long as tests require students to reproduce defi-
nitions and to figure out quantitative information, perfor-
mance often seems satisfactory. However, a serious lack of
conceptual understanding remains, as even the most intelligent
students often cannot transfer the insights they should have
gained to problems that differ from those dealt with in the
classroom. What has gone wrong? Often teachers hold the
‘direct transmission’ view of learning (Staub and Stern, 2002),
according to which successful classroom practice is seen as
teachers’ providing of information that students memorize
and retell. Such learning environments, however, may, at
best, help students accumulate facts or acquire simple skills
but will not support them in building up the conceptual
knowledge they need to model new and complex situations,
as required in science and mathematics.

The main barrier that keeps students from learning science
and mathematics is not so much what they lack, but what they
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have - namely, naive scientific knowledge that often works well
in everyday life but largely differs from and even contradicts
scientific explanations. Thus, to support students’ learning,
teachers must diagnose students’ initial understanding of the
content at hand. Knowledge not conforming to scientific views
should not be dismissed as the sad result of deficiencies in
previous instruction but, rather, be recognized as an inevitable
step in learning. Effective teaching requires presenting students
with questions and problems that stimulate processes of
knowledge reorganization and thereby help them overcome
their bounded or deficient beliefs. Thanks to concerted efforts
in educational research, we nowadays know very well that it is
the cognitively stimulating classroom environment created by
the teachers which is crucial for meaningful learning at all
achievement levels. In John Hattie's book Visible Learning, more
than 800 meta-analyses dealing with factors that might influ-
ence school-related achievement were analyzed and synthe-
sized. Obviously accessible factors like class size, methods of
instruction, or use of computers were of negligible impact.
What counts for student’s meaningful learning, however, are
teachers who are able to transform student’s errors into
learning opportunities by providing tasks and tools which
make the difference in light of what the students already
understand and misunderstand. By presenting their students
with challenging but solvable tasks and problems, competent
teachers support the construction of a knowledge base where
abstract concepts, facts, and procedures are integrated and
enable mutual activation.

Prior Knowledge: The Best Predictor of Learning
Outcome but Not a Substitute for Intelligence

When entering new learning settings, students often differ from
one another. Domain-specific knowledge and intelligence
have been identified as the two major sources of difference.
Research on cognitive development suggests that variations in
prior domain-specific knowledge can often better account for
achievement differences between younger and older children
than general cognitive capabilities. Moreover, longitudinal
studies, such as the Munich Longitudinal Study LOGIC, revealed
that within-age level achievement, differences in core elemen-
tary school subjects are to a remarkable extent determined by
domain-specific prior knowledge obtained in the preschool
years. Early numerical competencies could account for
achievement variations in mathematics after partialing out
general intelligence, and early indicators of letter identification
and phonological awareness predicted later performance in
reading and writing (Schneider and Bullock, 2009). The
reported results are important because they show that at least
in complex knowledge domains a high IQ cannot compensate
for a lack of prior knowledge, and moreover, that there is no
direct connection between intelligence and achievement in
content domains based on rich specific knowledge. However,
regression analyses based on longitudinal studies reveal that
the confounded variance of prior knowledge and intelligence
predicts differences in learning outcome better than each
single variable. If more intelligent children are placed in
stimulating learning environments, they will acquire usable
knowledge which will increase their lead.

There is, however, overwhelming evidence for the pivotal
role of prior knowledge for further learning and advanced
performance. Studies in different areas, among the mathe-
matics, science, and chess, have revealed much better outcomes
for persons with high prior knowledge levels (experts)
and somewhat lower 1Q than for persons with little prior
knowledge (novices) and high IQ (Grabner et al., 2007). Note,
it were novices and not laypersons who were considered in
these studies. In contrast to laypersons novices possess the
necessary domain-specific knowledge in terms of rules and
core concepts but differ from experts in their lack of practice.

For individuals who grow up in a cognitively stimulating
environment, prior knowledge and intelligence are to a certain
extent inextricably linked with each other. Intelligence may
guide the selection of learning environments and thereby
determine the acquisition of prior knowledge. A person with
a low IQ will hardly follow courses on theoretical physics even
if he or she is credited with extra time. Moreover, intelligence
may affect the number of content areas in which a person is
able to acquire a profound amount of prior knowledge. This
view has been clearly confirmed by the Study of Mathemati-
cally Precocious Youth, in which individuals were identified on
the basis of very high reasoning abilities before the age of 13.
Thirty-five years later, these individuals achieved occupational
success comparable to that of individuals attending world-class
mathematics, science, and engineering graduate training
programs. A remarkable result was that the ratio of very
successful people in the upper quarter of this highly selected
sample (percentile >99) was higher than in the lower quarter
(Lubinski and Benbow, 2006).

Intelligence and Learning: Educational Implications

Comparisons between schooled and unschooled groups reveal
a strong effect of education on intelligence test scores even on
nonverbal tests. Only by systematic education can individuals’
intelligence emerge and approach an optimum. However, given
that a basic level of education has been encountered, schooling
in general and special training programs in particular increase
intelligence only very modestly, if at all. IQ differences remain
quite stable over time in groups who have been attending
stimulating learning settings. Education highlights individual
differences in intelligence rather than compensating for them.
Broad variance in intelligence is a challenge for designing
educational environments. The question arises whether learners
of different intelligence levels gain more if they are assigned to
different learning environments. On a first glance, it sounds
plausible that less intelligent students gain more from structured
than from open instruction, while more intelligent learners
show the reverse pattern. This was the hypothesis when so-called
aptitude-treatment interactions were investigated. However,
most studies have failed to reveal interactions between intelli-
gence and educational treatment, some of them probably
because they lacked the statistical power necessary for revealing
interaction effects (Hattie, 2009). In general, when assigning
learners to different learning treatments according to their
intelligence, one must remember that IQ follows the normal
distribution. This means that 68% of the people in a
population do not differ by more than one standard deviation
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in either direction from the mean - they are quite similar.
Therefore, assigning an unbiased group of learners to two
different learning environments by median split of IQ scores is
basically problematic.

While attempts to reveal aptitude-treatment interactions
have not met with much success with intelligence as indicator
for aptitude, it has been shown in many contexts that learners
gain from different inputs depending on their prior knowledge.
For instances, for areas in science and technology, it has been
shown that visual-spatial representations do help novices in
understanding complex situations while they are either needless
or distracting for experts (Mayer, 2009). Similar results have
been shown for including means of focused processing, as
there are self-explanations or metacognitive questions. While
they help novices to develop a deeper understanding of a subject
matter by becoming aware of their misunderstandings and
wrong conclusions (Atkinson and Renkl, 2007), experts would
be unnecessarily detained by such aids. Such results are not
surprising because when being presented with a problem,
experts and novices differ in whether they already can fall
back on established procedural and conceptual knowledge
structures or whether they first have to build them up.
Therefore there are better reasons to assign learners to different
treatments based on their prior domain-specific knowledge
than based on their intelligence. Given the relationship between
intelligence and efficiency in learning and information pro-
cessing, a higher 1Q facilitates the exploitation of learning
environments, leading to the acquisition of knowledge that is
broad as well as deep enough to be prepared for mastering as yet
unknown demands of the future. As a consequence, the
knowledge gap between more and less intelligent students will
increase in the course of time. More intelligent learners who
have invested their intelligence in the construction of broad and
deep knowledge will be prepared for entering demanding
and abstract subjects which will remain closed for those who
started under less advantageous conditions. Providing different
educational tracks for learners with a vocational focus and for
those who are qualified for an academic path is part of the
educational system of most countries. There are, however,
remarkable differences concerning the age of the students at
which the separation starts. While this is around 15 in many
countries, in Germany and Austria, for instance, the separation
starts as early as 10 years. Meta-analyses, as they are reported by
Hattie (2009), revealed almost no impact of ability grouping on
student’s achievement growth. It rather seems to be the case that
professional teachers, who are aware of their student’s thinking
and knowing and who provide meaningful experience in light of
this knowledge, are able to boost different student’s potential.

See also: Cognitive Development: Mathematics Learning and
Instruction; Developmental Behavioral Genetics and Education;
Education for the Gifted and Talented; Instructional
Psychology; Learning Theories and Educational Paradigms;
Metacognitive Development: Educational Implications; Piaget’'s
Theory of Human Development and Education; School
Learning for Transfer.
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